AQMD Near Roadway Monitoring Studies

Dr. Philip Fine*

Planning and Rules Manager

South Coast Air Quality Management District (AQMD) 21865 Copley Dr, Diamond Bar, CA 91765

BACKGROUND

- Motor-vehicle emissions consist of a complex mixture of <u>particulate</u> and <u>gaseous</u> pollutants such as PM_{2.5}, UFPs, metals, OC, BC, VOCs, NOx and CO
- Living near major roadways has been identified as a risk factor for <u>respiratory</u> and <u>cardiovascular</u> problems, including:
 - Asthma and allergic disease
 - Reduced lung function growth
 - Increased risk of adverse birth outcomes
 - Cardiac effects

- Respiratory symptoms
- Premature mortality
- Lung cancer

NEAR-ROADWAY STUDIES: Steep fall-off with distance

Zhu et al., JAWMA, 2002

Zhu et al., Atm. Env., 2002

NEAR-ROADWAY STUDIES: Meteorology affects fall-off

NEAR ROADWAY MONITORING OBJECTIVES

- Gather additional data
- Potential NAAQS implications (e.g. CO, NO₂, Pb, PM)
 - Near roadway monitoring requirements
 - Maximum pollutant concentrations
- Other potential objectives:
 - Trends sites to evaluate control strategies and fuel changes
 - Accountability of regulatory programs
 - SIP development
 - Monitoring data to evaluate dispersion models used for local assessments
 - Environmental Impact Assessments (e.g. CEQA, NEPA)
 - Emission factor development and evaluation
 - Urban and land use planning
 - Community-scale monitoring
 - Evaluate concentrations near transportation sources
 - Support health studies/determine population exposures
 - Evaluate mitigation measures

AQMD's I-710 STUDY

- One-month intensives
 - February March 2009 (winter campaign)
 - July August 2009 (summer campaign)
- I-710 three sites
 - Nearest downwind of freeway(15 m)
 - Further downwind of freeway (80 m)
 - Upwind/background (Del Amo)
- Measurements
 - Continuous particle number, BC, PM_{2.5} mass, NO_X, CO, WS, WD, T and RH
 - PM₁₀ mass, OC and EC (24-hr samples; 1-in-2 day)
 - PM_{2.5} mass (24-hr FRM samples; daily)
 - TSP Lead (24-hr samples; 1-in-2 day)
 - VOC Air Toxics (4 samples per day; 5am-9am, 9am-3pm, 3pm-7pm, 7pm-5am; 1-in-2 day)

I-710 STUDY: Sampling Sites

I-710 STUDY: Results

I-710 STUDY: Results

Diesel PM

WINTER SUMMER 8 $BC_{ff} g/m^3$ 6 4.94 3.59 4 2.54 | 2.50 2 1.39 0.98 0 Del Amo 15 m 80 m Del Amo 15 m

Ultrafine Particles

EPA NAAQS FOR NO₂

- Annual Standard
 - 53 ppb
 - Annual mean
- One-hour Standard
 - 100 ppb
 - 98th percentile of all daily max 1-hr concentrations in a year
 - Three year average
 - Suggested range for the NAAQS revision: 80-100 ppb
 - Requires monitors within 50 m of major roads
- NO₂ monitoring issues
 - Identifying maximum concentration locations
 - Cost and logistics of establishing and accessing sites

I-710 STUDY: Results

- I-710 (15m) $NO_2 1$ -hour
 - 98th %-ile (2010): 83.3 ppb
 - 98th %-ile (2011): 81.3 ppb
 - •Below NAAQS of 100 ppb
- I-710 (15m) NO₂ Annual mean
 - •2010: 29.1 ppb
 - •2011: 27.6 ppb
 - •Below NAAQS of 53 ppb

- Evaluation of new technologies for monitoring traffic-related pollutants
 - •Ultrafine Particles
 - •Black Carbon (indicator of diesel PM)

- Multiple Air Toxics Exposure Study (MATES) IV
 - Characterize carcinogenic risk caused by air toxics exposure in SCAB
 - Measure ambient concentrations of UFPs and BC in local communities, near airports, rail yards, freeways, warehouse operations, and other emission sources

• Huntington Park Site not shown

• Assessment of air quality impact and effectiveness of sound walls and vegetated barriers in the near roadway environment. Three main components:

Air pollution monitoring

Dispersion modeling

- Installation of high-performance air filtration in schools
- Reductions close to 90% for UFPs, BC and PM_{2.5}

- * From gravimetric / filter measurements
- X The PM₁₀ concentration was higher indoors than outdoors due to indoor sources